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1. Introduction.

Let X, Y be Banach spaces and A C R" a bounded interval. Let F: A x X — Y be a smooth
operater. The nonlinear equation
(1.1) F(A\u) =0,
with parameters A € A is called parametrized nonlinear equations.
In this paper we deal with the parametrized nonlinear equation F': A x HYJ) — H™Y(J)

with one parameter A € A C R defined by

(1.2) F(\u)=0, (\u)eAx H),
(13) < F(hu)u>i= /J[a(/\,z,u'(z))v'(z) + Oz w(@)ulz)ldz, Vo € H(JT),
where J := (b,c) C R is a bounded interval, a,f : A x J x R — R are sufficiently smooth
functions, and < -,- > is the duality pair of #~1(J) and H}(J). Since F is a second order
differential operator in divergence form, finite element solutions of (1.2) are defined in a natural
way.

In [TB1], the above problem was concerned, and a priori error estimates of finite element
solutions were established. In this papar we try to develop a postriori error estimates of the
finite element solutions of (1.2) and (1.3) using a priori estimates obtained in [TB1].

The basic idea is as follows. Suppose that we want to solve the nonlinear equation
(1.4) < K(z),v>=0 for Yve H(J),

where K : H}(J) — H~!(J) is a smooth nonlinear operator. Let §h C H}(J) be a finite element

space and z; € g';. the finite element solution, that is,

(1.5) < K(zp),vp >=0 for Vu, € .;';,.

Then, we consider the linearized equation

(1.6) < DK(zp)¥,v >= - < K(zp),v> Vv € H}(J),

where DK (z,) is the Fréchet derivative at z, which is assumed to be an isomorphism between
H)(J) and H™Y(J).
Let z € H{(J) be the exact solution of (1.4). In Section 3 we will see that the magnitude

[lv]l represents the error {|z — z,]|, that is,

llz = zall < 111 + o(1)).




Of course, the exact solution ¥ € HJ(J) of (1.6) should be approximated by a certain way
in general. We will consider a finite element solution ), of (1.6). We observe, however, that the

finite element solution ¥, of (1.6) over .°§ & defined by
< DK(zp)¥n,vn >=— < K(zn),vn >, Vup € S

is a zero function because of (1.5). Therefore, estimating the magnitude ||¢|| is equivalent to
estimating ||¢ — ¥,||: the error of the finite element solution .

Hence, if we have certain methodology for a posteriori error estimates for the linearized
equation (1.6), we have a posteriori error estimates for the original nonlinear equation (1.4). In

a short sentence, the principle obtained here is that

“If we have a posteriori estimates of linear equations,

we have a posteriori estimates of nonlinear equations.”

Let (), u) be the exact solution of (1.2) and (An,us) be the finite element solution corre-
sponding to (), u). Usually, it is observed that the error |A — A4| is much smaller than the error
[lu = un|l- In Section 4 we obtain elaborate error estimates of |A — A,| which verify the above
observation.

In Section 5 practical aspects of our a posteriori estimates and some numerical examples
are given. In the computation of our numerical examples the continuation program package
PITCON (see [R]) developed by Rheinboldt and his colleagues is used.

This paper is a revision of a part of one of the authors Ph.D. dissertation [T].
2. Assumptions and A Priori Estimates.

In this section we sumerize the results obtained in [TB1]. Throughout this paper. we use same
notation as in [TB1].
Here, we deal with the nonlinear operator F : A X Wol'°° — W~ by for \ € A and

u € Wy,
(2.1) < F(A\u),v >:= /J[a(A,z,U'(z))v'(zH FOLz u(z))v(n)ldz, Yo e Wy,

where < -, > is the duality pairing between W =1 and Wol'l. Then, our problem is




Problem 2.1. Solve the following equation: Find A € A and u € W01'°° such that

< F(A\u),v>=0, Ve Wol'l. =]

For F being well-defined and smooth we require several conditions to a and f. Let a =

(a1, a2) be usual multiple index with respect to A and y. That is, for @ = (o1, @3), D®a(), z,y)

means zv ,Ialy 7a(A, z,y).

Let d > 1 be an integer. For o, |af < d, we define the maps A®(u) and F?(u) for u € W™

by

(2.2) A*(u)(z) := D%() z,4'(z)),

(2.3) F(u)(2) D2 f(), z,u(z)).

ii

We then assume that

Assumption 2.2. For all a, |a| < d, we suppose that
(1) For almost all z € J, D®a(A, z,y) and D® f(),z,y) exist at all (A\,y) € A x R. and they are
Carathéodory continuous.
(2) The mapping A® defined by (2.2) is a continuous operator from Wol‘“’ to L*, and the image
A%(U) C L™ of any bounded subset U C A x Wy is bounded.
(3) The mapping F°® defined by (2.3) is a continuous operator from W01'°° to L', and the image
F*(U) C L? of any bounded subset U C A x Wol'°° is bounded. O

We define the subset S C A x Wy'™ by
(2.4) S = {()u) € Ax Wg™| ay(), z,u'(z))"! € L®}.

Since the mapping A x Wg'°° 3 (A, u) = ay(A, z,v'(z)) € L™ is continuous, we have

Lemma 2.3. Ifa and f satisfy Assumption 2.2 withd > 1, S is an open set in .\ x Wol'x.

From the standard theory of Fredholm operators, we obtain the following theorem:

Theorem 2.4. Suppose that a and f satisfy Assumption 2.2 with d > 1. Then in S. the

operator F : S — W~1® defined by (2.1) is a nonlinear Fredholm operator of index 1. O




We define the subset R(F,S) C S by

(2.5) R(F,S) = {()u) € S|DF(A, u) is onto}.

The elements of R(F,S) and F(R(F,S)) are called regular points and regular values,
respectively. By Theorem 2.4, we can apply the Fink-Rheinboldt theory ([FR1],[FR2],[R]) to

the operator F and obtain the following.

Theorem 2.5. Suppose that a and f satisfy Assumption 2.2 withd > 1. Lete € F(R(F,S)).
Then
M=M,:={(\u) € R(F,S)| F(Au)=e}

is a one-dimensional C%-manifold without boundary. Moreover, for each (), u) € M. the tangent
space T(, ,)M at (A, u) is KetDF(A, u).

Therefore, if 0 € F(R(F,S)), the solutions of Problem 2.1 form a one-dimensional C 4.
manifold without boundary in R(F,S). O ‘

In the sequel of this paper we always assume that 0 € F(R(F,S)), that is, Mo # 0.
For the regularigy of (A, u) € Mo, we need additional assumptions. Let p*, 2 < p* < x be
taken and fixed.

Assumption 2.6. Under Assumption 2.2 with d > 1, we assume that
(1) For all A € A, the functions a(A,-,-), ay(A,-,-): J x R — R are continuous.
(2) For all (\,y) € A xR, there exist ay(\, z,y) for almost all z € J and are Carathéodory
continuous.
(3) The composition functions f(), z,u(z)), az(), z,u'(z)) arein LP" for any (\,u) € A x W01'°°.

Motreover, for any bounded subsets K C A x W01'°°,
{f(A,z,u(z)) € LP°| (\u) € K}, {az() z,u'(z)) € LP"| (N u) € A}

are bounded in LP". ©

Theorem 2.7. Under Assumption 2.2 and 2.6, we have u € W2P" for all (\.u) € M,.
Moreover, for all bounded closed subsets McC M, there exists a constant A'( .t() such that

sup_ |lullwsrr < K(M).
(A u)EM




Let .g';. C H{} be a finite element space. We define the finite element solutions of Problem 2.1

by
Problem 2.8. Find Ap € A and uy, € Sy, such that
< Fn,up),vp >=0, Yo, € Sp. O

Let o € L™ be such that a(z) > ¢ > 0 for all z € J Let (-,-), be the inner product of H}
defined by (u,v)q := /Jau’v’dz: for u,v € H}. Define the isomorphism T, € L(W 1= Wy>)
by < n,v >= (Tan,¥)as Vv € Wol'l for n € W= Also, define the canonical projection
Iy - H} — .§;. by (¥ = I§9,vh)a = 0, Yoy € .;‘h for ¥ € H!. Then, we observe that, for any

vh € .;'h and any v € Hj,
< F(An,up),vp >= 0 =< TR T, F( A, vr),v >= 0.
Following the Fink-Rheinboldt theory we define Fj : A x Wy'® — W~1® by
Fr(\u):=(I = PYT;u+ PRF(Mu),

where I is the identity of W~1%° and P2 := T7!$T,.

Lemma 2.9 ([R,Lemma 5.1]). The operator F,, satisfies the following:
(1) Fr(A\,u) =0 for some (A, u) € A x H} if and only if (M, u) € A x .°S‘;, and Fp(\.u) =0.
A 0

(2) F}, is a Fredholm operator of index 1 on A x H}. O

By Lemma 2.9, we have the following theorem as a consequence of the Fink-Rheinboldt

theory.

Theorem 2.10. Suppose that F is C* mapping (d > 1). Then the set of the finite elements

solutions of Problem 2.8,
My := {(Mn, un) € R(Fa, A x HY)|Fa(Mn,up) =0},
is a C% manifold without boundary. O

For a priori error estimates of the finite element solutions, we always assume the following.




Assumption 2.11. We assume that
(1) Assumption 2.2 with d (i.e. F is a C* Fredholm map).
(2) 0 € F(R(F,S)) (ie. Mg #90).
(3) Assumption 2.6 (i.e. u € W%P" 2 < p* < 0o for any (), u) € My).

-]
4) Sy, is regular and lim inf ||u - vy||;1 =0, for any v € H}.
8 Ay 10 H} 0
vAES)

(5) The triangulation of S, (in one dimensional case, the partition of J into small intervals)

satisfies the inverse assumption [C,p140]. O

In the sequel, we denote by il : Wol'1 — S, the interpolant projection.

Theorem 2.12. Suppose that Assumption 2.11 holds for d > 2. Also, suppose that Mo C
My is a compact regular branch, that is, there is a compact interval A C A and C? map

A3 X u()) € W™ such that
Mo = {(/\,u(/\)) € Mo | D,F(A,u(})) is an isomorphism for V) € -&} .

Then, there exists the corresponding finite element solution branch M, C .M, which is

parametrized by the same X € A and

ITau(d) = un(Mllgy < Kohi*,
15(A) = un(Mll

W) = sVl < Koh”

IA

IA

Kiflu(A) = Tau(M)ll g,

for all A € 7\, u(A) € /‘\710, up(A) € /7\:(;., and n with 0 < n < % Here, Ko, A1, A, > 0 are
constants independent of h and \.
Moreover, we have

M, CR(F,S). O

Theorem 2.13. Suppose that Assumption 2.11 holds for d > 2. Let My C Mg be a
connected compact subset with the following properties:

(1) DrF(},u) # O for any (), u) € Mo.

(2) There exist zo € J such that DG(), u) defined by, for given v € R,

(2.6) G(\, u) = (u(zo) — v, F(\,u)), (Mu)€eS

(2.7) DG, u)(t,¥) = (¥(z0), DF(X,u)(t, %)), teR.we W',
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is an isomorphism at all (\,u) E M.
Then /‘\7(0 is parametrized by v = u(zo). We assume without loss of generality that the
above zq is a nodal point of g'h for all sufficiently small h > 0.
Then there exists the corresponding finite element solution branch My C My which is
parametrized by the same v, that is, up(v)(zo) = v and Fr(An(7),un(v)) =0 for any 7.

Moreover, we have

() = A+ [1Tau(r) = un(Dll gy < K3k,
IA(Y) = M)+ () = un(Dllgy < Kallu(r) = Tau()llg;
A = AL+ 1l(7) = un(Nlyp < Kk,

M, C R(F,S),

for all v = u(z0), (\(7),u(7)) € Mo,(An(7),un(7)) € My, and 7 with 0 < n < 5. Here.

K3, K4, K5 are positive constants independent of h and v. O

3. A Posteriori Error Estimates.

In this section we consider a posteriori error estimates. Before going into our problem, we
observe an error estimate in a general Banach space setting.

Let X and Y be Banach spaces and V C X open. We consider a generic C° mapping
K : V — Y such that DK(z) € £(X,Y) is an isomorphism at each z € V, and D°A'(z) is
bounded on bounded subsets in V.

Suppose that we are considering the equation
(3.1) K(t) =0, teV.

Let tex € V be an exact solution, i.e. K(tgx) =0, and t4p € V an approximate solution, i.e.
K(tap) = 0. Note that, since DK(tgx) is an isomorphism, tgx € V is isolated. that is. there
is no other solution of (3.1) in the small enough neighborhood of tpx.

From elementary calculus on Banach spaces, we have
. . 1 1 ; .
(3.2) 0= K(tap) + DK(tap)s + 5 (/ (1= )2 D*K(tap + s:)ds) (z.2).
0
where z := tgx — tap. Let us consider the following linearized equation:

(3.3) 0= K(tap)+ DK(tap)z, eV




From (3.2) and (3.3) we obtain

(3.4) DK(tap)(z - 3) = -% (/:(l — $)2D2K(tap + sz)ds) (z,2),
(3.5) z-F= -—%DK(tAp)'l [(/01(1 — s D*K(tap + sz)ds) (z,z)] ,
and

. 1 . - 1 .
I - 2lx < FIDK(tap) llccry [ 1D*K(tap + sollecxxx.y dsllzlk.

Since D?K € £(X x X,Y) is bounded on bounded subsets, there is a constant M such that

llz = Zllx < M||z||%, and we obtain
(3.6) llzllx < 12l x (2 + O|Z]lx))-

By the argument in [TB1,Section 4], we know that, at each (A, u) € Mg, we have either
Case 1: KerD,F(A,u) = {0} and DyF(), u) € ImD,F(),u), or
Case 2: dimKerD,F(),u) =1 and D, F(\, u) ¢ ImD, F(\, u).
Now, let us suppose that we are in Case 1. To apply (3.6) we set up the following
X=Wy®, Y =W-le
X DV =R(F,S) defined by (2.5),
K(u) = F(),u) for given and fixed A € A.

From (3.6), we have
e = unllyp.e < NVl (1 + O[Tl 1.0 ))s
where (A, u) € My, (A, us) € M, and U is the exact solution of the linearized equation
3.7 w0l Dy F(A\ up)U,v > 1= =< F(A up),v >, Vve Wol‘l.
By Theorem 2.12, we have ,P_n}) F(A\ up) =0 and ’l'i_lf})“U”Wo‘-“ = 0. Therefore, we obtain

Theorem 3.1. Surpose that (A\,u) € My is on a regular branch. Then we have, under

Assumption 2.11 with d > 2,
llu - uh”wo'v°° < ”U”wo‘ (14 0(1)). a
We next consider an a posteriori error estimate in Hl-norm. From (3.5). we have
] ~1 l o 2
z2-U= —--2-D,,F(/\,u;,) [(/ (1=s)Di, F(\ up+ s:)ds) (=, :)] .
0
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" where z := u — u,. Recall that D, F() u) € L(H, H™!) is an isomorphism, and
l -
o< (/ (1-38)2D2 F(\up + sz)ds) (z,2),v >
0

= '/;(a‘(z)zav' + Bi(z)z%v)dz, Vv € Wol'l,

1 1
where a1(z) := A (1 = 8)2ayy(N, z,up + 32')ds and fi(z) := /0 (1 = 8)2 fyu (X, 2, up + s2)ds.

Hence, we get

IN

lleallzeollz"}l 2 + [181]! 2 ]l= 112

“(/01(1 ~$)2D2 F()\ up + sz)ds) (z2,2)

H=!

IA

Crllzlly. =12l g

and
llz = Ullgy < Call=llyllzll gy -

Therefore, by Theorem (2.12), we obtain ||z|| 41 < ||U]| ;1 (14+C3h") for any n with 0 < n < ,l’_
a SV g 2

and

Theorem 3.2. Suppose that (M, u) € "%, is on a regular branch. Then we have, under

Assumption 2.11 with d > 2,
||“'Uh||11,; SNl g (1 + (1)) a

Next, let (A\,u) € Mg such that DyF(),u) # 0. Then, by Theorem 2.13. there exists a
nodal point o5 € J of .§,, such that the Fréchet derivative DG(A, u) of the mapping G(\. u) :=
(u(zo) = v, F(A,u)) is an isomorphism of R x W01‘°° to R x Wl

We consider the following problem.
Problem 3.3. Forgiven vy € R, find u € W01'°° and X € A such that
w< F(A\u),v>1=0, VYve WM and u(zg) =v. 0O

Problem 3.3 -orresponds to the equation G()\,u) = (0,0). Naturally, we define the finite

element solution for Problem 3.3 by

Problem 3.3pg. For given vy € R, find u, € S, and )\, € A such that
< F(An,up),vn >=0, Vv, € Sp, and un(rg)=1v. O

10




Since DG(\,u) is an isomorphism, we can apply (3.6) to Problem 3.3 and 3.3rg. The

linearized equation is
(3.8)  (U(z0),8DyF(An,un) + DuF(On, un)U) = (0,—F(M,up)), 0€R, UeWy™.

It follows from Theorem 2.13 that ,l'l_I.I}J F(Ap,un) =0 and ’l‘i_r’r})(HUllWJ,oo + 16]) = 0. We set
X=RxW;® Y =Rx W1,
K(X\ u) = G(A, u) for given y € R
By (3.6), we have

Theorem 3.4. Suppose that (A, u) € My satisfies Dy F(A,u) # 0. Then we have, under

Assumption 2.11 with d > 2,

A= Ml + = unllygg.o < (181 + 0llgao) (14 0(1). O

We can get an a posteriori error estimate in Hj-norm. Rewriting (3.4) in the above setting,

we have
(3.9)  DGOw,un)(t-8,z—U) = -% (/01(1 — s DG + st, un + sz)ds) (t.2),
where t := A = A4, z := u — uy, and
(3.10) D2G(), u) = (0, D*F(\,u)).
Since
< D*F(\u)(t,2)% 0 > = tz/J[au(/\,z,u')v'+f,\,\(A,z:,u)v]d::
+ Zt/J[aAy(,\,z,u')z'v'+f,\y(/\,:c,u):v]dz
+ /J[aw(/\,z, w2V + fy() T, u)z%0]dz,
we easily obtain
(3.11) ID?F(An + st,un + s2)(t, 2)%[|lg-1 < At + Blefll=ll gy + Cll=llwp = ll=lary

for any s € {0, 1], where A, B, C are constants independent of h.

Therefore, from (3.9)-(3.11), there exists a constant M such that
6= 81 +11z = Ully < MO + (18] + Uzl o)zl ).
and we obtain

11




Theorem 3.5. Suppose that (\,u) € Mg satisfies DyF(A,u) # 0. Then we have, under

Assumption 2.11 with d > 2,

A= Anl+ llu = unllgy < (181 +11Ullgy ) (14 0(1). O

Now, to get another a posteriori estimate, we consider the following auxiliary equation: find
W, € H} such that

(3 12) ( —(ah(z)W,;)’ + 5;;(2:)W,, =-F,~-nK, onJ- {:Co},
' { Wa(zo) =0,

where ap(z) 1= ay(An, 2, u4(2)), Ba(2) := fy(An, 2, un(2)), and

Fy

_a(’\hv z, u;l(z))l + f( Ak, z, u;,(x)),

Ky = —ax(dn,z,up(z)) + AA(As, 7, ua(2)).

Since (3.12) is equivalent to DG(Ax, up )(0, W,) = (0, — F, —nK,0) we see that, for sufficiently
small A > 0, (3.12) has a unique solution W, for n € R which is sufficiently close to 9 (see the
proof of Lemma 4.3).

Note that, even if u,(z) is not continuous,
By (z) 1= an(z)Wy(z) + nar(An, z,up(z)) + a(An, 2, up(z))
is continuous on J —~ {zg}. Then, we define the ‘jump’ J(7n) at z = z4 by
(3.13) Jn)i= lim_@y(z)= lim &,(2)

From (3.8) and (3.12), we clearly have J(8) = 0. Let U := W,. Then, we claim that

Lemma 3.6. We have

A

B+ 101wz < 1T llyroe(1 + (1)),

61+ 1101 < NT]g (1 +o(1)).
Proof. Integrating (3.12) by part, we have
(3.14) < DyF(hn,up)U, v >= — < F(Ap,up),v > +9(20)J(0),
for any v € H). Taking ¢ € g‘h with ¥(zg) = 1 and fixing it, we obtain
(3.15) < D F(An,upn)U, v >= J(0).

12




Let z € H} be the function which satisfies 2(z¢) = 0 and
< Dy F(An,un)z,v >=< DyF(Mp,up)¥,v >, Vv € Hi[zo],
where H}[zo] := {v € H} | v(zo) = 0}. Since U(zo) = 0, we have
(3.16) < DuF (M, u0)2,U >=< DuF(An, un)¥, U > .
It follows from (3.14) that
(3.17) < D F(On,un)U,wy >= = < F(Ag,up),wh >=0, Yuwy € gh[IO],

where .§h[zo] = {vh € §h | ’Uh(:to) = 0}.

Since Dy F(Ap, up) is self-adjoint, we obtain
(3.18) < DuF(n,un)(z = wn), U >=< DyF(Mn,un)¥, U >
by subtracting (3.17) from (3.16). Combining (3.15) and (3.18), we obtain
1JO)| = | < DuF(n,un)(z = wn), T > |, Vwy € Slzo).
Now, letting wy, be the finite element solution of z, we get
70| < Cullz - wallgy ITllypo0r  fim llz = wallgy =0,

where C; is a constant independent of A.
Since (3.12) is a linear equation with respect to W,, the implicit mapping n — W, defined
by (3.12) is C* and therefore there exists the derivative of W, with respect to n. We denote it

by 8,W,. We see that 9,W, € H}, and it satisfies

{ -—(a;,(z)(a,,W,,)')’ + Br(z)0,Wy = =Ky on J - {zo},

3.19
( ) aan(Io) =0,

Note that integrating (3.19) by part shows us that J(n) is differentiable and we have
< DyF(An,un) + Dy F(An, up )3, Wy,v >= v(z0)J'(n), Vv € Hj.
We remark that J'(n) # 0. If J'(n) = 0, we would have
(BnWa(z0), DaF(An,un) + DuF(As,un)d,Wy) = (0,0).
Since DG(Ap, up) is an isomorphism, we obtain the contradiction (1,9,W,) = (0,0).
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Therefore, we obtain —J(0) = J(8) — J(0) = 6J'(£8),0 < £ < 1, and
(3.20) 161 < 17'(€0)7M1I(0)] < Callz = wall gy 1T llyy1 -
On the other hand, we have
(3:21) 17 = Tllwy. < Calél,

because U = Wy, U = Wy, and the mapping 1 — W, is C*. Combiring (3.20) and (3.21), we

conclude that

161+ 1T .

IA

61+ 1T = Fllygro + 1Tl

IA

1T 1lyp.e=(1 + o(1)).

The second inequality is proved by the same manner. O

Theorem 3.7. Suppose that (), u) € Mg satisfies DyF(\,u) # 0. Then we have, under

Assumption 2.11 with d > 2,

IA

|)‘-/\h|+||u-uh||wg-oo l|17||wg-oo(1+0(1)).

A= 2nl+llw = unllgy < Tl (1 4 0(1)),

where U € H} is the exact solution of the following equation:

/}[ay(Ah’x!u;l)ﬁ’v,+ fy(’\hv z,u;,)f]v]d:c =-< F(/\h,Uh),U >, Vv € H(%[IO]‘
(3.22)

U(zo) = 0. 0

Remark 3.8. From Theorem 3.1, 3.2, 3.4, 3.5, and 3.7, a posteriori estimates of the error
[lu = ual] and |A = Ax| + ||u — ua|| are reduced to estimates of ||U||, |8}, and ||U}]. respectively.
We will compute the finite element solutions Uy, 6, (7,, of the equations (3.7), (3.8), and (3.22)
and see |[Uall, |6], |74l instead of U], 18], [T

We must, however, notice that the right-hand sides of those linearized equations (3.7).
(3.8), and (3.22) are the terms F(\,up) and F(Ay,up). By the definition, those terms vanish
for vy € .§;., that is, < F(A, up),va >=< F(Ap,up), vn >= 0 for any vy, € g';,. Hence, the finite
element solutions of (3.7), (3.8), and (3.22) over g’,, would be just the zero functions and they

would be useless to estimate ||U]|, |6], and ||T|].
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We use the different finite element space .§h such that 5,‘ C 5';. to avoid this difficulty. That
is, to compute the finite element solutions of (3.7), (3.8), and (3.22), we use the refined mesh
or higher order polynomials on each finite element. Then, we will obtain nonzero finite element
solutions Uy, , Oy, , (7,.1, and ||Ux, ||, |0n, 1, ||U &, || indicate the error |ju—uy|| and |A=Ap|+||u—u4l|,
respectively.

Note that, in the computation of the |[Uy, ||, |64, ], ||I7,,I ||, we do not need to solve the entire
problem. The estimations of ||Uy,}|, |6a, 1, ||l7;,‘]| are done by an element-by-element approach
(see [BR]).

The details of the practical computation will be presented in Section 5. O

4. Elaborate Error Estimates of |A — ).

Sometimes, one may want to estimate only the error |A — A,]. Usually, it is observed that [A =),
is much smaller than |ju — uh“,,;. In this section we develop two elaborate error estimates of
IA = Anl.

Let (A, u) € My be such that (A, u) is around a turning point or on a ‘steep slope’, that is,
DyF(A,u) # 0. Let the nodal point zo € J of Sy be taken so that DG(), u) € L(R x WA™ R x
W=1.°) is an isomorphism (see Theorem 2.13). Let v := u(zg). Then, (), u) is a solution of the

following problem:

Problem 4.1. Find u € W, and A € A such that

(4.1) /J[a(/\,z,u'(z))v’(t) + f(\z,u(z))v(z)lde =0, Vve W,

u(zo) = 7. ]

By Theorem 2.13, it is guaranteed that, for sufficiently small A > 0, there exists a locally

unique solution (An, us) € My of the following problem around (A, u) € My.

Problem 4.1rg. Find u € Sy, and A\, € A such that

(4.2) /J[a(/\,.,z,ufl(z))v;,(z) + f(Mn 2, un(2))on(z)]dz =0, Vo, € S

up(z0) = 7. g

To estimate the error |A — A4| we introduce the following auxiliary equation.
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Problem 4.2. Find & € W™ such that

{ —(a(An, z,8'(2))) + f(An,z,%(z)) =0 on J - {zo},

4.3
( ) ﬁ(l‘o) = 9. a

On the existence of the solution 4 of Problem 4.2, we prove the following lemma.

Lemma 4.3. Suppose that Assumption 2.11 holds for d > 2. Let (Ao, uq) € Mo be such
that DyF()o,u0) # 0. By Thorem 2.13 we can take a nodal point zo € J of .;';. such that
DG(\g,up) defined by (2.7) is an isomorphism.

Then, there exist ¢ > 0 and a unique C? map (Ao — €, Ao +€) 3 A — w(l) € W01‘°° which
satisfies

(4.4) = (a(X,z,w(A) () + f(X,z,w(A)(2)) =0,  w(M)(zo) =7,

where v := uo(zo).

Proof. Let Wg'[zo] := {v € W, |u(zo) = 0}. First, we note that w(}) satisfies (4.4) if and
only if it is the solution of the following equation:
[,[a(:\,z,w(i)'(z))v'(z) + f(0, 2, w(A)(z)u(z))dz = 0, Vv € W [zo].
w(A)(zo) = 7.
Let (W2 [zo])" be the dual space of Wy![zo]. We define the mapping G : A x Wi —
R x (W3 zal)" by GO, w) = (w(zo) = 7, FO\ )

N 71,
w‘:.:[n])- Then we have, for v € 1, ™,

(4.5) Dwé(/\,w)’tll = (1/’(1?0),(DuF('\,w)w)lwl,xlzo]) :

If we show that D, G()g,uo) € C(Wol'°°,R X (Wol'l[zo])‘) is an isomorphism, Lemma 4.3 is
proved by the implicit function theorem.

Recall that DG()g,up) € L(R x Wol‘°°, R x W~1.°) is an isomorphism. Thus, the mapping
DG( o,

uo)l{o}xw‘-“ is an isomorphism of {0} x W™ into its image. From (2.7). we have
0

(4.6) (DG(r0, o) ¥ = (¥(z0), DuF(do, uo}¥).

{O}xw;'“)
By (4.5) and (4.6), we conclude that Dwé(,\o,uo) is an isomorphism, and this completes

the proof. O

For w(}) defined by (4.4), we define the jump’ J(}) of w(}) at z = zo by
J(A):= lim a(} z,w())(z)) - um+a(i,z,w(,i)'(z)).
I~ T—x9
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From (4.4), we have
(4.7) < FG, w(d),v >= /J[a(i,z,w(i)')v' + fO, 7, w(3))eldz = v(z0)J(X),
for any v € Wol'l. Let @ := w(A4). Then, # is the solution of Problem 4.2, and we have
(438) < FOw )% >= [ [a(h 2,800 + f, 7, 000ldz = TOW),

for any ¥ € Wy with ¥(zo) = 1.
We take ¥ € S), with ¥(zo) = 1 and fix it. Since (Ax,up) € My, we have

(4.9) | f, [y 2, wh ()W + F(On, 7, ua(2))¥)dz = 0.

From (4.8) and (4.9) we get

(4.10) J(An) = g/J[ai(z)(ﬁ' —up)' Y+ Bz ) — ua )t Y)dz,
where )

00(17) = Gy(Ah,I, u;.(z)), ﬂO(z) = fy(Ah,I,U};(z)),
al(z) = %ayy(kh!zsu;.(z))) ﬂl(z) = %fyy(’\hqu Uh(z)),
az(z) = %awy(/\h,z,u;(z) + e(@'(z) —up(z)), 0<e <1,

Ba(z) = %fyyy(Ah:zy up(z) + e2(4(z) —up(z))), 0<e<1,

(4.11)

From the proof of Lemma 4.3 and ’Emb Jlu — Uhllwol.oo = 0, there exists a unique : € Wy ™

such that z(zo)>= 0 and
(4.12) /;[ao(z)z'v' + Bo(z)zv)dz = A[ao(z)w'v' + Bo(z)wvldz, Vv € Wyl [zo].
Note that 4(z9) = up(zo) = 7. Hence, @ ~ u, = 0 at z = zg. Thus, we obtain

(4.13) /, (00()2'(3 — un + Bo(z)2(@ — un)ldz

= [ lootzv'(a - w) + Ba(2)b(i - wn)ldz.
On the other hand, for any w € 5‘;. with w(zg) = 0, we have

/J[a(,\h,z,ﬁ’(z))w'+ f(An, 7, 8(2))w]dz =0,
/J[a()u.,z,u;,(z))w' + f(Mn, Z, un(2))w]dz = 0.

Therefore, we obtain

2
(4.14) ) /J[a.(x)(ﬁ' — w4 Bu(z)(@ — un)Hwldz = 0.

1=0
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From (4.10), (4.13) and (4.14), it follows that

(4.15) (A < I/J[ozo(:c)(z' —w) (@ = up) + Bo(z)(z — w)(@ ~ up))dz

+

2
> /J[ai(z)(ﬁl —uf )@ = w') + Bu(z) (@ — un) T (¥ — w))dz

=1

Now, let z; € S;, be the finite element solution of z and plug it into (4.15). Then, we obtain

the following higher order error estimate of {J(A)|:

(4.16) [T < (1 < DuF(n, un)(@ = un)yz = 24) > |

431 < D2, FO, m)(3 = w), % = 21 > [)(1+ (1))

Let us now see the relationship between |A — A4| and |J()A4)|. By Lemma 4.3, the solution
w()) of (4.4) is differentiable with respect to ). Differentiating (4.7) with respect to A, we show

that the function X — J(}) is C? and satisfies
(4.17)  w(zo)J'(A) =< DyF(A, w(})) + Do F(A, w(M))drw(A)), v >, Yve Wy,

where 3 w(}) € Wy'™ is the derivative of w()) with respect to .

Recall that (), u) € Mg, DyF(A,u) #0, u = w()), and J(X) = 0. We claim that J'(\) # 0.
If J'(A) = 0, we would have Dy F(A,u)+ D, F(A,u)(0ru) = 0, and (9 u)(zo) = 0. Since DG(A. u)
is an isomorphism, we have a contradiction that (0,0) = (1,8 u). Since &1_1.1}) [N = Ap| = 0. we
conclude that J'(A,) # 0 for sufficiently small A > 0.

Thus, we have =J(\y) = J(A) = J(As) = (A = M) (On + €A = M), 0 < € < 1. and

(4.18) 1A = M) = 7O+ EO =20 IO,

for sufficiently small 2 > 0.
We would like to replace the term |J'()\, + &(A = Ax))|~! by some computable one. We first

note that

J'(On + €2 = M) J(An) + 60 = A)T"(Mn + u(X = An))

J'(A)(1 + o(1)), (0<p<l).

Hence, we just have to approximate J'(A,) instead of J'(Ay + £(N = Ap)).

Again, take ¢ € 5',, with ¥(z9) = 1 and fix it. From (4.17), we have
(4.19) J' (W) =< DaF(An, 8) + Dy F( M, 2)(323). ¥ > .
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With (4.19) in our mind, we define the ‘approximate jump’ J;(Ap) at z = z¢ by
(4.20) Jh(An) :=< DAF(Ap,un) + Dy F(An, un)(0run ) ¥ >
where 3 \u), € .g';,[zo] is the finite element solution of the following equation:

(4.21) < DuF(An, un)(@run),vp >= = < DaF(An,un),vn >, Vup € Sh[zo).
Now, we would like to estimate |J'(Ay)— J; (A4)|. First, we ncte that ||axa—axu,.||,,; = o(1),
because dyi € W' satisfies (8,@)(zo) = 0, and
< DuF(Ah)ﬁ)(aXﬁ)vv >=-< DXF(’\’I’ ﬁ)vv >, Yv € Hé[IO]
Subtracting (4.20) from (4.19), we see
J'(A).) - J)’.(/\h) = < D,,F(/\,,,u,,)(axﬂ - a;‘uh),w >+ <L Dqu(/\h, uh)(& —up),w >
+ < D,?,,,F(A,.,u,.)(a,a,a — up), ¥ > + higher order terms.

Therefore, we obtain
(4.22) |7'(A) = o (W) = o(1).

Finally, we replace the term % — u; in (4.16) by u — u,. Since u = w(A), & = w(Ay), and
the mapping (A — €, +¢) 3 X — w(}X) € Wy'™ is C? class, we have ||u = illyy1.= < ColA ~ Al
with a constant Cy independent of k. Therefore, we immediately obtain that
(423) U5 - wllay < Ilw - uallgy + Cllu = .o = llu = unllgy + CColA = Anl.

Combining (4.16), (4.18), (4.22), and (4.23), we obtain the first elaborate error estimate of

|A = Anl.

Theorem 4.4. Suppose that Assumption 2.11 holds ford > 3. Let (), u) € M be such that
DyF(\,u) # 0. By Theorem 2.13 we can take a nodal point zq € J such that DG(\, u) defined
by (2.7) is an isomorphism. Let (A, uy) € M), be the finite element solution corresponding to
(A, u) with u(zo) = un(zo). Then, we have the following estimate of |\ — \p[:

(4.24) A=l < |IOw)|™ (| < DuF(Ap,un)(u —un), 2 = 2n) > |

+%| < Dqu(,\;..u;.)(u —un)? -z > l)(l + o(1)),

L]
where z € H& and z), € S, are, respectively, the exact and finite element solution of (4.12) for

appropriate Y € Sy with Y(zo) = 1, and J,()\4) is the ‘approximate jump’ defined by (4.20) and
(4.21). O
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Now, let us consider the second elaborate error estimate of [A — Ap|.

Again, we consider Problem 4.1 and 4.1pg. From (4.1) and (4.2), we have

(4.25) 0 = (A=) < DaF* vy >+ < Dy F*(u — up), v, >
1
+5(A = M)? < DLFY,on > +(A = M) < DI FM(u = un), v >

1 °
+5 < DﬁuF"(u —up)®,up > + higher order terms, Vv, € Sy,

where D,\F'l = D,\F(/\h,uh), Dth = D.,F(/\h,u,,), etc.

We introduce the following auxiliary equation: Find n € R and z € H} such that

(4.26) /J[ao(t)Z'U’ + Bo(z)zv]dz = n < 85,,v >, Vv e HE,

< D;F",z >=1,
where 6, is Dirac’s delta at zg, and ag, fo are defined by (4.11). For the existence of the

solation of (4.26), we show the following lemma.
Lemma 4.5. For sufficiently small h > 0, (4.26) has a unique solution (7,z) € R x H}.

Proof. First, suppose that we have Case 1, that is, Dy F* := Dy F(As,up) € C(H}, H™Y) is
an isomorphism. Then, we have < DyF* (D, F?)™1(6;,) >=< bz,,(Dy F*) 1 (DyF") ># 0, be-
cause of the way of taking the nodal point z9 € J (see the proof of [TB1,Lemma 8.1]). Therefore.
(4.26) has the unique solution n:=< DyF (D, F*)~1(6,) >, z := n(Dy F*)~Y(é;,).

Next, suppose that we have Case 2, that is, KerD, F* =span{y} and D, F* ¢ ImD,F*.
There exists (6,4) € R x H} such that 4D, F» + (D ,F*)¢ = 6;,, and § € R is determined
uniquely. We check that §;, ¢ ImD, F?, and hence 9 # 0. If §;, € ImD, F*, there would exist
w € H{ such that é;, = D Fhw. Thus, from [TB1,Lemma 8.1], we obtain an contradiction
0 #< 6z, ¥ >=< Dy FPw, ¥ >=< Dy FPy, w >=0.

Therefore, in this case, (4.26) has the unique soluticn 7:= 0, z := %y because
0

<D FMz2>=< D\F* 2> 487 ' < D, F*¢,:>=6"" < 6.,z >=1. O

Now, let us set v := u ~ u, in (4.26). Since < 6,,,u — up, >= 0, we obtain

(4.27) < D FPzu—uy, >= /J[ao(z:)z'(u' - uy) + Bo(z)z(u — up)jdz = 0.
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Since D, F? is self-adjoint, it follows from (4.27) that
(4.28) — < Dy FP(u = up),vp >=< Dy F*(u = up),z = vy >, Vo € Sh.

From (4.25), (4.28), and plugging the finite element solution z, of the equation (4.26) into

vy in (4.25), we obtain

(/\— A;.) < DAF",—Z}, > = =< D,.Fh(u— UR), 2~z >
+%(,\ =M< DL FY 2 >+ (A= Ay) < D3, Fhu—un), 2n >
1

+~ < D? F*(u —u)? z, > + higher order terms,
2 us

and we have proved the following theorem.

Theorem 4.6. Suppose that Assumption 2.11 holds for d > 3. Let (M.u) € M and
D)\F(A,u) # 0. By Theorem 2.13 we can take a nodal point zg € J so that DG(), u) defined
by (2.7) is an isomorphism. Let (A4, up) € My, be the finite element solution corresponding to
(A, u) with u(zo) = up(zo)-

Then, we have the elaborate error estimate
(4.29) 1A= Ml < (1 < DuFOn,un)(s = un) 2 = 21) > |
1
+5| < D2, F(n, un)(u = up)?, 25 > |)(1 + o(1)),

where z and z, are the exact and finite element solutions of the equation (4.26), respectively. O

Remark 4.7. By Theorem 4.4 and 4.6, a priori error estimates of |A — \,| are obtained.
Since we have a posteriori error estimates for |ju - u;,HH; and ||z - Zh”}{;v and all terms in (4.24)
and (4.29) are computable, those estimates are a posteriori error estimates as well. The detail

of practical computation is given in Section 11. O

5. Numerical Examples.

In Section 5 we present several numerical examples and discuss some points for implementation
of the a posteriori error estimates presented in this paper. Our first example is the following

simple one:
Example 5.1.

(5.1) { u"(z) + Au(z) =sin(7rz) in J :=(0,1),

u(0) = u(1) = 0. O
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s;n(wzu) around )\ = 72,

Let Ajs be the uniform mesh of J = (0,1) with 15 elements. Let Sp C H] be the finite

The exact solution of (5.1) is u(z) =

element space of piecewise quadratic functions over Ajs. We use PITCON to compute the finite
element solutions (\,,us) € R x .°9;, of (5.1). Table 5.1 shows a part of the output of PITCON.

As ), is getting close to 72, u is getting bigger and the ‘slope’ is getting steeper. In Table 5.1
the term |\ — \,| stands for the error between the exact and computed A. Hence, |A — A4| =0
means that ) is the continuation parameter at that step. We see that while A < 7.13828, A
is the continuation parameter. When A becomes greater than that point, u,(zo), zo := Th or

zo := 8h (h = 1/15) is taken as the continuation parameter.

Table 5.1: The output of PITCON: Example 5.1.

An [A = Anl Hi-error | Wj™-error
0.0 0.0 3.67717D-4 | 1.15846D-3
1.32361 | 0.0 4.24670D-4 | 1.33773D-3
3.17042 | 0.0 5.41741D-4 | 1.70611D-3
5.16503 | 0.0 7.71425D-4 | 2.42834D-3
7.13828 | 0.0 1.32875D-3 | 4.17803D-3
7.83691 | 2.02465D-5 | 1.80565D-3 | 5.64451D-3
8.85394 | 2.29519D-5 | 3.59614D-3 | 1.12780D-2
9.38086 | 2.43528D-5 | 7.44952D-3 | 2.34080D-2
9.50916 | 2.46938D-5 | 1.00926D-2 | 3.17268D-2
9.68198 | 2.51532D-5 | 1.93655D-2 | 6.08957D-2
9.75356 | 2.53434D-5 | 3.12921D-2 | 9.83730D-2

In Table 5.1 ¢ H}-error’ stands for ||u—uh||HJ if A is the continuation parameter, and |\ = Ay |+
[l — unllgy if X is not the continuation parameter. Also, ‘W, "*-error’ stands for |Ju — Up|l 1.0
0
if A is the continuation parameter, and |A ~ Ap| + ||u — ua|,y1. if A is not the continuation
0

parameter.

Now, we discuss how we estimate those errors. If A is the continuation parameter, we surely
can use a usual method to estimate ||u — “hllgg- We however use the method presented in this
paper to estimate ||u — u,,ll,,; here to show how we implement our a posteriori error estimates.

Let u, € 5';. be the piecewise quadratic finite element solution of (5.1) over A;5. We then

introduce another finite element space Sy € H{} of piecewise polynomials of degree 4 over \s.
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We compute the finite element solution u € S of the following equation:
(5.2) /J(-—&;,izil + MOy )dz = /;(u;.ﬂ;, — AupUp +sin(7rz)iy)dz, Vi, € §h.

Then, by Theorem 3.1, 3.2, and Remark 3.8, ||12,.||H; and ”ﬁh“wol,eo indicate {lu — up||y; and
[Ju — u;,||w; ., respectively.

Note that, as stated in Remark 3.8, we do not need to solve the full system of (5.2). Instead
of that we just solve tiny equations defined on each element because we can assume that the
values of the finite element solutions of (5.2) at the nodal points are zero (see [BR]).

As mentioned before, if ) is not the continuation parameter, zo = Th or zg = 8h (h = 1/15)
was taken by PITCON so that u,(zg) is the continuation parameter at that step. In that case,
we use the methods presented by Theorem 3.4, 3.5, and 3.7. We first approximate the exact

solution (4, U;) € R x H} of the equation

(5.3) /J(-U{v' + A Urv)dz + 9/;uhvdz = /J(u;,v’ ~ Aupv +sin(rz)v)dz, Vv € Hj,
with U3(zg) = O (see (3.8)). We also approximate the exact solution U, € H} of the equation
(5.4) /;(—Uéu' + MU2v)dz = /J(u;,v' — Apupv + sin(7z)v)dz,

with U(z¢) = 0 for any v € H} with v(zq) = 0 (see (3.22)).
Let (6x,U1n) € R x Sy and Uy, € Sk be the finite element solutions of (5.3) and (5.4),

respectively. By Theorem 3.4, 3.5, 3.7, and Remark 3.8, we have the following estimates:

(5.5) |A = Anl + 1w — unll gz < (1081 + NT1all g3 X3 + 0(1)),

. 1A = Al + llu = wnllypre < (1] + 1 U1all .o )2 + 0(1)),
(55) |A = Aal + 1 = uall gy < HUz2nllgy (1 + 0(1)),

' 1A= M)+ llu = unllyg.o < | Uanllyype (1 + 0(1)).

Again, to solve (5.3) and (5.4), we take the element-by-element approach, that is. instead of
computing full systems, we solve tiny equations on each element. Note that in the computation
of (5.3), the value ) is determined at first by solving an equation defined by (5.3) on the two
elements which contain zq as a nodal points. Then the rest of U;), is computed using the obtained

On.

In Table 5.2, we summarize the results of computation. In Table 5.2, ‘A", ‘H{-error” and




Table 5.2: The estimated errors of

A= Apl + [Ju = unll: Example 5.1.

b H}-error H}-estV) Hi-est® | Wy ™-error | Wy ™-est) | W, *-est(?)
0.0 3.67717D-4 | 3.67729D-4 1.15846D-3 | 1.15905D-3
1.32361 | 4.24670D~4 | 4.24684D-4 1.33773D-3 | 1.33856D-3
3.17042 | 5.41741D-4 | 5.41758D-4 1.70611D-3 | 1.70757D-3
5.16503 | 7.71425D~4 | 7.71448D-4 2.42834D-3 | 2.43154D-3
7.13828 | 1.32875D-3 | 1.32877D-3 4.17803D-3 | 4.18819D-3
7.83691 | 1.80565D~3 | 1.80641D-3 | 1.78547D-3 | 5.64451D-3 | 5.64856D-3 | 5.62764D-3
8.85394 | 3.59614D~3 | 3.59692D-3 | 3.57331D-3 | 1.12780D-2 | 1.126€4D-2 | 1.12628D-2
9.38086 | 7.44952D-3 | 7.45042D-3 | 7.42542D-3 | 2.34080D-2 | 2.34293D-2 | 2.34043D-2
9.50916 | 1.00926D-2 | 1.00936D-2 | 1.00683D-2 | 3.17268D-2 | 3.17597D-2 | 3.17343D-2
9.68198 | 1.93655D~2 | 1.93667D-2 | 1.93409D-2 | 6.08957D-2 | 6.09867D-2 | 6.09608D-2
9.75356 | 3.12921D-2 | 3.12935D-2 | 3.12675D-2 | 9.83730D-2 | 9.85787D-2 | 9.85525D-2

‘Wy'*-error’ are exactly same to those in Table 5.1. For )y less than 7.5, ‘H}-est(})” and "W >-
est(1)’ stand for HﬁhHHol and ||12,.||w°|,m, respectively, where @y € Sy, is the finite element solution
of (5.2).

For A, greater than 7.5, ‘H{}-est(!) and ‘W, ®-est(!> are the estimated errors given by
(5.5). Also, ‘H(}-estm’ and ‘W01’°°-est(2)’ are the estimated errors given by (5.6). \We see that
the estimated error Hj-est!) and W01'°°:est.“) match very well to the corresponding exact errors.
H{-est® and Wy ™-est(? are slightly underestimated. We however notice that those estimated
errors are very close to the exact errors |ju — unllgy and [[u - 'U.h”wol,oo, respectively.

Now, let us turn into a posteriori error estimates of |A — )\4|. Suppose that A is not the
continuation parameter. In that case, as stated before, either zy := Th or zg := 8h (h := 1/15)
is taken by PITCON. Let v € :9;, be a piecewise linear function such that ¥(zg) = 1. and
Y(z;) =0 if z; # zg, where z, are nodal points of A5.

Then, we consider the following equation (see (4.12)): z(z¢) = 0 and

(5.7) /J(—z'v' + AMpzv)dz = /;(—w’v' + Apyv)dz, Vv € H) with v(zo) = 0.

Let 2, € Sy, be the finite element solution of (5.7) on As. Of course, we can estimate the error
lz = zall gy by a usual method (see [BR]).
Next, let w, € S) be the finite element solution of the following equation (see (4.21)):

wi(zo) = 0 and
/J(-wf,v;, + Apwpvp)dz = - / upvpdz, Vv, € S with va(ry) = 0.
7
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We then compute the ‘approximate jump’ J;(\,) by (see (4.20))
Jh(An) = /;(—w;gﬁ' + AMwn + upv)dz.
By Theorem 4.4, the error | — Ay| is estimated by
(5.8) IA = Anl < ITROWI NIz = 2allgglle = unll g3 (1 + o(1)).

On the second method of the a posteriori error estimates of | A~ A,|, we consider the following

auxiliary equation (see (4.26)):
(5.9) / upzdz =1, and /(-—z'v' + Apzv)dz = nu(zg), Vv E H&.
J J
Let (nn, 2z5) € R x Sj, be the finite element solution of (5.9). To estimate the error ||z — Zh”H;

we consider the finite element solution (7, 23} € Rx Sy of the following equation: / upipdz =0
J

and
/J(—fﬁ;'. + AnZptn)dz = faUn(Z0) = Main(zo) + /J(Z;.f’;; — Mnzain)dz, Vi, € Sy

Then, we have the estimate ||z — Zh”y‘; < ([} + l1Zp}l gt )2 + 0o(1)). By Theorem 4.6, we have
the error estimate

(5.10) 1A = Al S lv = wall gy 1z = 2ll g (1 + 0(1)).

In Table 5.3 we summarize the results of computation.

Table 5.3: The estimated errors of |A — Ax|: Example 5.1.

An A = Axl [N = Apl-est) | A = Ayl-est(?)

7.83691 | 2.02465D-5 | 2.09092D-5 2.09092D-5
8.85394 | 2.29519D-5 | 2.36144D-5 2.36145D-5
9.38086 | 2.43528D-5 | 2.50152D-5 2.50153D-5
9.50916 | 2.46938D-5 | 2.53562D-5 2.53563D-5
9.68198 | 2.51532D-5 | 2.58155D-5 2.58156D-5
9.75356 | 2.53434D-5 | 2.60058D-5 2.60058D-5

In Table 5.3, A, and |A — A,| are same to those in Table 5.1. The term ‘| — \;|-est{!)* stands
for the estimated error by the first method (5.8). Also, |\ — \y|-est(®)’ stands for the estimated

error by the second method (5.10).

Now, let us consider the second example:




Example 5.2.

{ u"(z) = e jn J:=(0,1),
(5.11)

u(0) = u(1) = 0. ]

The exact solution is, for A > 0,
A=2ulcos™?(), u(z)= ln(cos2 (&) cos‘z(u(z - %))),
with 0 < 4 <, and, for A <0,

A= —2u2cosh™? (8), u(z)= ln(cosh2 (%) cosh™? (u(z - %))),

with 0 < g < oo. The exact solution has a turning point around A = -3.5138307... (4 =

2.39935728...).

Again, we use the uniform mesh As and the piecewise quadratic finite element space ;‘h.
In Table 5.4 we show a part of output of PITCON for the equation (5.11). In Table 5.4, the
meaning of the each column is exactly same to that of Table 5.1. Since the exact solution

manifold has the turning point, the continuation parameter was changed three times in this

case.

Table 5.4: The output of PITCON: Example 5.2.

a [A = Anl H}-error | Wy ®-error
8.40542 | 0.0 1.63866D-3 | 7.49987D-3
5.44008 | 0.0 8.22946D-4 | 3.57924D-3
2.49599 | 0.0 2.20383D-4 | 8.91786D-4
0.55874 | 0.0 1.37612D-5 | 5.19053D-5

-0.31518 | 9.05067D-10 | 4.98056D-6 | 1.79948D-5
-2.65152 | 1.03592D-6 | 6.32418D-4 | 1.85565D-3
-3.20484 | 2.62501D-6 | 1.27568D-3 | 3.55051D-3
-3.51384 | 6.80290D-6 | 2.80848D-3 | 7.86645D-3
-3.16924 | 1.36428D-5 | 5.66465D-3 | 1.69629D-2
-2.79878 | 1.72583D-5 | 7.69351D-3 | 2.41313D-2
-2.40918 { 0.0 9.92705D-3 | 3.22005D-2
-2.01181 { 0.0 1.26025D-2 | 4.28233D-2
-1.65256 | 2.38990D-5 1.56130D-2 | 5.56118D-2
-0.81887 | 2.38261D-5 | 2.73707D-2 | 1.07902D~1
-0.35494 | 1.92353D-5 | 4.41004D-2 | 1.82042D-1

Now, let us discuss how we estimate the errors. As before, if A is the continuation parameter.

we consider the following equation:

/(11;.17,, + Ae"h iyt )dz = ~ /(u;,z'),'l + de® iy )dz, Vi € S.
J J
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Then, by Theorem 3.1, 3.2, and Remark 3.8, llﬁhlng and “'&h“wol,oo indicate |ju — u;,HH(; and
Hu — u;,||W°| 00, Tespectively.

If )\ is not the continuation parameter us(zg), Zg := Th or zg := 8h (A = 1/15) is taken

by PITCON as the continuation parameter again. Let (8,4, 0U154) € R x Sh and Uy, € Sp, be the

finite element solutions of the following equa;ions:
/J(U{,,a;, + Ane Unin)dz + Oh/Je""z'f;,dz =- /J(u;,a;, + e 3y)dz, Vin € Sh,
with Ujn(zo) = O (see (3.8)), and
/J(Uz',,z?,', + Ape®r Uspip)dz = - /J(uf,z‘/,', + ,\he"."ﬁh)dz, Vin € Sp with x(zg) = 0,

with Uz,(z0) = O (see (3.22)). Then, by Theorem 3.4, 3.5, 3.7, and Remark 3.8, we have the

estimates (5.5) and (5.6).

Table 5.5: The estimated errors of |A — Ap| + |ju — un||: Example 5.2.

Ah H}-error Hi-est®) Hi-est® | WoP-error | Wy ®-estD) | W, *-est(?)
8.40542 | 1.63866D-3 | 1.63864D-3 7.49987D-3 | 7.51304D-3
5.44008 | 8.22946D-4 | 8.22950D—4 3.57924D-3 | 3.58542D-3
2.49599 | 2.20383D-4 | 2.20387D-4 8.91786D-4 | 8.93190D-4
0.55874 | 1.37612D-5 | 1.37615D-5 5.19053D-5 | 5.19762D-5
-0.31518 | 4.98056D-6 | 4.98073D-6 | 4.97980D-6 | 1.79948D-5 | 1.80164D-5 | 1.80155D-3
-2.65152 | 6.32418D-4 | 6.32790D-4 | 6.31403D-4 | 1.85565D-3 | 1.85655D-3 | 1.85520D-3
-3.20484 | 1.27568D-3 { 1.27705D-3 | 1.27309D-3 { 3.55051D-3 | 3.55423D-3 | 3.35014D-3
-3.51384 | 2.80848D-3 | 2.81408D-3 | 2.80173D-3 | 7.86645D-3 | 7.87953D-3 | 7.86662D-3
-3.16924 | 5.66465D-3 | 5.68141D-3 | 5.65102D-3 | 1.69629D-2 | 1.70139D-2 | 1.69809D-2
-2.79878 | 7.69351D-3 | 7.71847D-3 | 7.67615D-3 | 2.41313D-2 | 2.42075D-2 | 2.41704D-2
-2.40918 | 9.92705D-3 | 9.92680D-3 3.22005D-2 | 3.22601D-2
-2.01181 | 1.26025D-2 | 1.26020D-2 4.28233D-2 | 4.29783D-2
-1.65256 | 1.56130D-2 | 1.56603D-2 | 1.55881D-2 | 5.56118D-2 | 5.59372D-2 | 5.58390D-2
-0.81887 | 2.73707D-2 | 2.74236D-2 | 2.73431D-2 | 1.07902D-1 | 1.08632D-1 { 1.08644D-1
-0.35494 | 4.41004D-2 | 4.41342D-2 | 4.40703D-2 | 1.82042D-1 | 1.85414D-1 | 1.85044D-1

In Table 5.5, we summarize the results of computation. The meaning of the each column in
Table 5.5 is same to that of Table 5.2.
To estimates of |\ — A,|, we consider the finite element solution :;, € S, of the following

equation (see (4.12)): zx(zg) = 0 and
/(z;‘v;‘ + Apetrzpup)dr = /(w'v,'l + Apetrypuy)dz, Vv, € .09,, with v,(zg) = 0.
J J
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where ¢ € 5,, is defined as before.

Next, let w, € S, be the finite element solution of the following equation (see (4.21)):

wi(zo) = 0 and
/;(w;,v;, + Ape*rwpup)dz = —/Je“"vhdz, Yoy, € .g';, with v,(zo) = 0.
We then compute the ‘approximate jump’ J;(A,) by (see (4.20))
TO) = /J(wgw' + Anehwpy + e*)dz.

By Theorem 4.4, the error |A — | is estimated by (5.8) as before.
For the second method of a posteriori error estimates of |A — A,|, we consider the finite

element solution (7, 2,) € R x 5;, of the following equation (see (4.26)):
/Juhz;.dz =1, and /;(z,’,v;, + Anetrziup)dz = npun(zg), Vv € .g'h.
Let (7a, 2) € R x §;. be the finite solution of the following: /Je“"z'hdz =0 and
/J(z;,a;, + Ape®P 3, 0p)dz — ApOn(T0) = Mrin(zo) - /J(z;,z'z;, + Apetrzudp)dz, Vi, € Sy

Then, we have the estimate ||z — zallgy < (17} + [Zall g2 )(1 + o(1)).

By Theorem 4.6, we obtain the estimate (5.10).

Table 5.6: The estimated errors of |\ — A, |: Example 5.2.

An A =2n] A= AplresttD) [ [A = Apl-est®
-0.31518 | 9.05067D~10 | 9.07245D-10 | 9.07245D-10
-2.65152 | 1.03592D-6 | 1.03587D-6 1.03587D-6
-3.20484 | 2.62501D-6 | 2.62472D-6 | 2.62472D-6
-3.51384 | 6.80290D-6 | 6.80112D-6 | 6.80114D-6
-3.16924 | 1.36428D-5 1.36350D-5 1.36351D-5
-2.79878 | 1.72583D-5 1.72446D-5 1.72447D-5
-1.65256 | 2.38990D-5 2.38564D-5 2.38567D-5
-0.81887 | 2.38261D-5 2.37475D-5 2.37480D-5
~0.35494 | 1.92353D-5 1.91313D-5 1.91315D-5

In Table 5.6 we summarize the results of computation. In Table 5.6,

each column is same to that of Table 5.3.

The last example is the following one which is strongly nonlinear (see [R,p17)):
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Example 5.3.

d (s .y
(5.12) {ZEA(u)+B(/\,u)=O, in J:=(0,1),

u(0) = u(1) =0,

where the functions A(y), B(\,y) are defined as follows:

A(y) ;= arctan(y/2),  B(A,y) := a(X, y)(1 +&(-b(A, y)) + b(A, y)n(a( X, y)),
a(A, y) := Asin(y) + v cos(y), b(X, y) := Acos(y) — vsin(y),

_lva-v, frt<o, _
&(t) = { t+ 282, fort >0, n(t) := arctan(t/2). 0O

We set v := 1.0 in the computation.

The exact solution of (5.12) is not known. According to the output of PITCON, as is shown
in [R], the solution branch of (5.12) is ‘S-shaped’ and has two turning points.

Again, we use the uniform mesh A;s and the piecewise quadratic finite element space.

We explain how the errors are estimated. As before, if A is the continuation parameter, we

consider the following equation:
/J(-Ay(u;.)ﬁi.f'i. + By(A, up)untn)dz = - /J(-A(ui.)fu. + B(\, up)in)dz, Vin € Si.

By Theorem 3.1, 3.2, and Remark 3.8, |[d]|y) and “‘&h“wol.oo indicate ||lu — ualig; and |lu -
u;."wol,oo, respectively.

If A is not the continuation parameter uy(zo), Zo := Th (h = 1/15) is taken by PITCON as
the continuation parameter. Let (8;, U;,) € R x Sh and Uy, € Sy, be the finite eiement solutions

of the following equations:

/J(‘Ay(“;u)vihi’l’; + By( A, un)Urntn)dz + 6 /J By(An, up)indz

=- /J (=A(u,)d, + B, un)on)dz, Vi € S,
with U4(z9) = O (see (3.8)), and

/J(“‘Ay(";.)Uéhf’f. + By(An, un)Uznin)dz

=- /J(-—A(u},)ﬁ,, + BOw, un)in)dz, Vin € Sy with Bx(zo) = O.

with Uz,(zo) = O (see (3.22)). Then, by Theorem 3.4, 3.5, 3.7, and Remark 3.8, we have the
estimates (5.5) and (5.6).
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To estimates of |A ~ A,|, we consider the finite element solution z;, € S, of the following

equation (see (4.12)): zp(zo) =0 and
/;(—Ay(u;,)zj,v,’, + By(An, un)zpvp)dz = /J(—Ay(uf,)w’v;, + By(Mn, un)up)dz,

for all v, € S with vp(zo) = 0, where ¥ € S, is defined as before.
Next, let w, € .§,. be the finite element solution of the following equation (see (4.21)):

wip(zo) = 0 and
/J("Av(“;-)wi“)lh + By(An, un)wpvn)dz = — /; Bi(An,un)undz, Vuy € .;’h with va(r9) = 0.
We then corﬂpute the ‘approximate jump’ J; () by (see (1.20))
Tw) = [[(~ASRIURY + ByAn ua)unw + By, unw)dz.
By Theorem 4.4, the error |A — A4} is estimated by
(513) A=l < AW (Callz = zallmgllu = wlliy + Callu ~ uallyg )1 + ol 1),

where C; := ||Ay(u},)l[z= and Cp := F{|Ayy(up (¥’ = z3)llLo-
For the second method of a posteriori error estimates of |[A — A,|, we consider the finite

element solution (7, z») € R x Sy, of the following equation (see (4.26)):

/jB;(A;.,u,.)z;.dz: 1, and

/J (=Ay(uh)zhvh + By(n, un)znva)dz = mava(z0), Vv € Sh.

Let (74, %) € R x 5y be the finite solution of the following: / Ba(Mn, un)ndz = O and
J

/] (= Ay (uh) 2454 + By(An, un)inin)dz ~ finda(zo)

= Ma¥n(z9) — /;(—Ay(uf,)zf,ﬁh + By(An,up)zatn)dz, Vi, € §h-

Then, we have the estimate ||z — z;,ll,,a < (|| + ||E;.||H; )1+ o(1)).

By Theorem 4.6, we obtain the estimate
(5.14) 1A = 2l < (Cillu = wallggllz = zally + Callw = unllfyy )1+ 0(1)).

where Cy := [|Ay(u})llze and Cz := 3| Agy(u} )zl
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Table 5.7: The estimated errors of |A — M| + |{u — uaf| and [A = Ax|: Example 5.3.

An H}-esttV) H}-estt? Wy -est]) | Wy P-est® | [ = Apl-estD) | |A = Ay |-est(?)
0.19521 | 1.14416D-4 4.57789D-4
0.57696 | 1.09716D-4 3.80008D-4
0.97248 | 1.33223D-4 4.14384D-4
1.14096 | 1.56647D-4 | 1.56434D-4 | 4.84460D-4 | 4.84272D-4 | 2.13860D-7 2.13860D-7
1.79178 { 4.69535D-4 | 4.68635D-4 | 1.60921D-3 | 1.60849D-3 | 9.00308D-7 9.00307D-7
2.46764 | 2.51702D-3 | 2.50907D-3 | 1.05407D-2 | 1.05376D-2 | 7.97236D-6 7.97234D-6
2.99606 | 1.24576D-2 | 1.23968D-2 | 5.72413D-2 | 5.72317D-2 | 6.19293D-5 6.19290D-5
3.24514 | 4.20951D-2 | 4.18066D-2 | 2.55047D-1 | 2.55964D-1 | 3.17004D-4 3.17003D-4
3.08956 | 5.04095D-2 3.20935D-1
1.95627 | 1.58211D-2 7.29373D-2
1.59592 | 1.19638D-2 | 1.19317D-2 | 5.39609D-2 | 5.41812D-2 | 3.37883D-5 3.37878D-5
1.19898 | 1.17190D-2 | 1.16916D-2 | 5.79405D-2 | 5.69798D-2 | 2.60112D-5 2.60120D-5
0.99403 | 3.20333D-2 | 3.20370D-2 | 1.91055D-1 | 1.91055D-1 | 4.70059D-5 4.70191D-53
1.05847 | 1.06782D-1 | 1.06848D-1 | 7.26805D-1 | 7.27113D-1 | 1.97460D-4 1.97328D-4
1.29395 | 7.73202D-1 | 7.89621D-1 | 6.10406D0O 6.43073D0 1.12810D-3 | 1.11374D-3

In Table 5.7, we summarize the results of computation. According to PITCON. turning

points are at A = 3.24513871 and ) = 0.99403398. The meaning of the each column in Table 5.7

is same as before.
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